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SUMMARY

A review ls made of some of the experimental data and analyses ap-
vplicable to convectlive heat transfer in fully turbulent flow in smooth
tubes with liquid metals and viscous Newtonian fluids. An empirical
equation is evolved that closely approximates heat-transfer values ob-
tained from selected analyses and experimental data for Prandtl numbers
from O0.001 to 1000. The terms included in the equation are Reynclds
number, Prandtl number, and an empirical diffusivity ratio between heat
and morentum.

INTRODUCTION

Proposals for electric-pcwer generation on space vehicles have
stimulated increased interest in the use of liquid-metal heat-transfer
loops with nuclear power sources. As part of a comprehensive heat-
transfer program being conducted at the NASA Lewis Research Center, a
literature survey was made to determine the need for further basic re-
search cn fully turbulent forced-convection heat transfer with liquid
metals as the working fluid. In considering that viscous Newtonian
fluids will also have application in other flow and heat-transfer sys-
tems on many space vehicles, the decirability of a single, relatively
simple equation for the prediction of fully turbulent forced-convection
heat transfer over a wide range of Prandtl numbers (from less than 0.04
for liquid metals to over 100 for oils) becomes evident. For the most
part investigators have developed analyses and equations applicable over
only a limited range of Prandtl or Reynolds numbers. Considerable doubt
exists as to the validity of extending these limited equations over the
wide variations in fluid properties and flow conditions characterized by
Prandtl and Reynolds numbers.
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Herein a review is made of some of the published data and analyses
applicable to viscous Newtonian and liguid-metal fluids. An empirical
equation, based on selected heat-transfer models, is then evolved that
vields convective heat transfer, for engineering purposes, over a
Prandtl number range from 0.001l to 1000 and a Reynolds number range from
2.1x10% to 107 for fully turbulent flow in smooth round tubes.

PRESENT STATUS OF TURBULENT FORCED-CONVECTION HEAT TRANSFER

This section provides a brief synopsis of and background material
on some of the analyses and data commonly referred to in the literature;
it is suggested that the references be consulted fur details.

Liquid Metals

Convective heat transfer in liquid metals (Pr << 0.1) differs from
that usually ascribed to conventional fluids in that the molecular con-
duction in the core of the fluid flowing in a tube cannot be neglected
in comparison with eddy diffusion. Martinelli (ref. 1) extended the
analogy between heat and momentum transfer to low Prandtl numbers.

Lyon's study (ref. 2) is an extension and simplification of Martinelli's
analysis. The main differences between these studies is that Martinelli
assumed a uniform surface temperature along a tube, whereas Lyon assumed
the same transverse heat flow per unit area to exist over the entire

tube wall. Martinelli and Lyon both assumed identical diffusivities for
both heat and momentum; however, as stated in reference 3, Lyon also car-
ried a ratio of these quantities different from 1.0 throughout his anal-
ysis. On the basis of his analysis Lyon proposed the following simpli-
fied equation for predicting convective heat transfer with liquid metals:

Nu= 7.0 + 0.025 pe0-8 (1)

(Symbols used herein are defined in the appendix.) It should be noted
that equation (1) is independent of Prandtl number except as it occurs
in the Peclet number.

Jenkins (ref. 4) and Deissler (ref. 5) modified the mixing-length
theory to apply to low Prandtl number fluids by accounting for the heat
transferred by conduction to a turbulent particle (eddy) as it moves
transversely away from the heated tube surface, so that the heat and
momentum diffusivities cannot be considered equal. Both investigators
assumed that the heat diffusivity is reduced to a value below that for
momentum diffusivity. Deissler alsc provides a simplified equation for
predicting the convective heat transfer with liquid metals:

Nu = 6.3 + 0.00022 pel-d (2)
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Although equation (2) was developed for a Prandtl number of 0.01, it
should apply equally to other Prandtl numbers, because Deissler's anal-
ysis showed that the relation of Nusselt to Peclet number was substan-
tially independent of Prandtl number.

Lykoudis (ref. 6) and Viskanta (ref. 7) have used somewhat differ-
ent analytical models for the diffusivity ratioc between heat and momen-
tum than those of the preceding investigators. In both of these closely
related analyses the diffusivity ratioc in the low Prandtl number range
is less than 1.0 and varies as a function of Prandtl number, approaching
a value of zero as the Prandtl number approaches zero. Therefore, the
analyses of Lykoudis and Viskanta differ from those discussed previously
in that the variation of Nusselt number with Peclet number is also de-
pendent on Prandtl number. Viskanta's analysis differs from that of
Lykoudis mainly because of the effect of different velocity profiles on
mixing-cup temperature and velocity (Kérmén as compared with Lykoudis
velocity profile). In general the Viskanta analysis yields a somewhat
higher Nusselt number for a particular Peclet number than does the
Lykoudis analysis; for example, at a Peclet number of 10° and a Prandtl
number of 0.02 (mercury) Viskanta obtains a 12 percent higher Nusselt
number than that of Lykoudis. At very low Peclet .numbers, less than
103, the results of Lykoudis and Viskanta are substantially the same.

Finally it should be noted that the diffusivity ratio used in the
analyses of Deissler, Lykoudis, and Viskanta all include a term that is
obtained from experimental data. For example, Lykoudis presents the
following equation (ref. 6) for the diffusivity ratio:

6 (e—cz/Pr -4c2/Pr)

—_ + 0.25 e
7o

(3)

0 =

where cp 1is obtained by matching Lykoudis' analysis with the experi-
mental lead-bismuth data of Johnson (ref. 8). The value of Co  was

found to be 0.0l and was furthermore assumed to be valid and ccnstant
for all liquid metals and Prandtl numbers.

The analytical heat-transfer results of Lyon, Deissler, Lykoudis,
and Viskanta are shown in figure 1 plotted in terms of Nusselt number
as a function of Peclet number. Also shown in figure 1 are ranges of
experimental data, normalized by Lubarsky (ref. 9), obtained primarily
with mercury and a lead-bismuth mixture (0.02 < Pr < 0.04). Of the
several analytical results shown in figure 1, the analysis of Lykoudis
clearly shows the variation of Nusselt number with Prandtl number for
a constant value of Peclet number, whereas Deissler's and Lyon's anal-
yses show no dependence on Prandtl number, as stated previously. At
Peclet numbers less than 100 all the analyses yield a Nusselt number of



approximately 7. The experimental data generally fall considerably be-
low Lyon's analytical values. Deissler's analytical curve is in good
agreement with the experimental data for Peclet numbers less than 1000;
however, the trend of the curve deviates markedly from the experimental
data for Peclet numbers greater than 1000. Lykoudis' and Viskanta's
analytical curves appear to be good representations of the experimental
data throughout the range of Peclet numbers shown. It should be re-
called, however, that Lykoudis and Viskanta used s portion of the exper-
imental data shown in figure 1 in order to evaluate the constant co in
equation (3); hence the good agreement between the analytical values and
the experimental data would be expected.

Viscous Fluids

Convective heat transfer with conventional liquids (Pr > 0.5) is
difficult to correlate on the basis of Peclet number only, especially
for viscous cils. Correlation in terms of Reynolds number is therefore
preferred to Peclet number, since the former correlates not only liquids
but also gases. For Newbonian fluids with a Prandtl number near 1.0
fully turbulent forced-convection heat transfer for flow through smcoth
tubes has been expressed by the following empirical equation:

Nu = AReZprP (4)

where A, a, and b have been determined experimentally. Various in-
vestigators have obtained a variety of values for these constants, which
for the most part are applicable over only a short range of Prandtl and
Reynolds numbers. Theoretical studies have resulted in a similar plur-
ality of equations. Equation (4), familiar to most thermodynamicists,
is generally referred to as the Colburn equation (ref. 3) and for such
fluids as air and water represents experimental data reasonably well
when expressed as

Nu = 0.023 Re0:8pr0-33 (4)

The general form of the Colburn equation is valid for Pr >> 1.0

only when different constants are used for various Prandtl number ranges.

Hofmann (ref. 10) developed two equations to cover a Prandtl number
range from about 0.1 to over 1000. These equations result in a nonlin-
ear relation between Nusselt number and Prandtl number for a constant
Reynolds number when plotted on log-log coordinates. The Colburn equa-
tion, on the other hand, in a particular Prandtl number range yields a
straight-line variation for a similar plot of variables. Metzner (ref.
11) conducted an analysis similar to that of Hofmann but developed &
somewhat different equation for Prandtl numbers much greater than 1.0.
At high Prandtl numbers (over 100) Metzner assumed equality between
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Schmidt number (mass transfer) and Prandtl number. Deissler (ref. 12)
presents an extensive analysis of convective heat transfer for Prandtl
and Schmidt numbers up to 3000 which compares favorably with data. This
contribution by Deissler is considered by many to be one of the out-
standing in the field.

For purposes of simple comparison, heat-transfer values calculated
from the works of Colburn, Hofmann, Deissler, and Metzner are shown in
figure 2 in terms of Stanton number as a function of Prandtl number
(from 0.5 to 1000) for Reynolds numbers of 104 and 106. The deviation
of Metzner's curve from Hofmann's curve for Prandtl numbers greater
than 100 may possibly be attributed to somewhat different analytical
approaches. Hofmann's work for the most part agrees well with Deissler's
analysis. For a Reynolds number of 104 the agreement is good up to a
Prandtl number of 100, with Deissler thereafter indicating a higher
Stanton number with increasing Prandtl number than Hofmann. For a Reyn-
o0lds number of 106 agreement seems good up to Prandtl numbers of 1000.

PROPOSED EQUATION FOR TURBULENT FORCED-
CONVECTION HEAT TRANSFER
Assumptions

The following assumptions were made for the presently proposed
empirical heat-transfer equation:

(1) Over the range of Prandtl numbers from 0.00%L to 1000 the Nusselt
number varies with the 0.8 power of the Reynolds number.

(2) An empirical diffusivity ratio 0¥ shall approach 1.0 for
Prandtl numbers greater than 0.5 and decrease with decreasing Prandtl
number for Prandtl numbers less than 0.5. The values of % for Prandtl
numbers less than 0.5 shall be determined to yileld the Nusselt number
variation with Prandtl and Peclet numbers shown in figure 1 for Lykoudis'
analysis.

(3) For zero Prandtl number the Nusselt number shall be 6.8, which
is considered the lowest theoretical limit for turbulent flow (ref. 6).

(4) For Prandtl numbers greater than 0.5 the relations between
Nusselt, Prandtl, and Reynolds numbers presented by Hofmann (ref. 10)
shall be considered valid.



Development of Empirical Equation

An equation having the general form

Nu = BE_“l(Pr)] + C[fz(Pr)]Reo'BPrEfS(Pr’ReB ()

appeared to be indicated from cross plots of data and considerations of
previous analyses. Superficially this form of equation appears to be
similar to that developed by Lyon for liquid metals rather than that
given by Colburn for air and water. However, the Prandtl number func-
tion f1(Pr) in the first term on the right side of equation (5) may

be allowed to vary from a value of 1.0 at Pr =0 to a negligible value
at high Prandtl numbers. Therefore, when fl(Pr) - 0 at high Prandtl
numbers, equation (5) takes the form of the Colburn equation. A simple
relation for f1(Pr) which yields the desired variation with Prandtl
number can be expressed by

f1(Pr) = T = ¢ (6)

By inspection, when Pr = O, the second term on the right side of
equation (5) is zero; hence, from equations (5) and (6), Nu = B when
Pr = 0. It has been previously stated that the lowest theoretical limit
of Nu for turbulent flow is 6.8 and occurs when Pr = O (ref. 6);
therefore, B = 6.8. The first term of eguation (5) can now be written

B[fl(Pr)] = 6.8 l_ _-56868 (7)

il + Pri

Consider now the term f2(Pr), which represents the diffusivity ra-
tio. For Pr > 0.5, f3(Pr) approaches 1.0, while C can be taken as a
constant identical to that used in the Colburn equation. Therefore for
Pr > 0.5

fo(Pr) = C = 0.023 (8)

Equation (5) can then be written for Pr > 0.5 as

Nu 2 0.023 ReO'BPr[fS(Pr’Reﬂ (9)

Cross plots of Nu, Pr, and Re based on Hofmann's analysis then yield
the function fz(Pr,Re) quite readily. An equation for fz(Pr,Re) that

fits Hofmann's heat-transfer curves quite well can be written
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0.1
f.(Pr,Re) = 0.41 Re0-04(__L 10
3( ’ ) 1 + Pr ( )

or, since 1/(1 + Pr) = 6,
£, (Pr,Re) = 0.41 Re0-04¢0-1 (11)

For Pr < 0.5, an expression for fo(Pr) that will satisfy the second
assumption stated at the beginning of this section (while not signifi-
cantly affecting eq. (9) for Pr > 0.5) can be written

[ 1 1. o
£2(Pr) [ (1L + 19Pr + 100Pr3)_| ’ (12)

This equation yields decreasing values of o¥ (empirical diffusivity
ratio) with decreasing Pr values.for Pr < 0.5 while yielding a o¥
value spproaching 1.0 for Pr >> 0.5.

The final equation for convective heat transfer for fully turbulent
flow in a smooth round tube can now be written

0.0490.1

0.8 r0.41 Re

Nu= 6.8 6 + 0.023 0*Re~ " P (13)
Equation (13) can be used to obtain the Nu against Pe function
developed by Viskanta (ref. 7) by modifying the 0¥ relation given in

equation (12) as follows:

o% o =1 - 1/(1 + 26Pr + 100Pr?) (14)

Use of ofo,q 1in place of the original o* has a negligible effect on
the Nusselt number calculations for viscous Newtonian fluids (Prandtl
numbers > 0.5).

RESULTS AND DISCUSSION

The Nusselt number variation with Peclet number cbtained by Lykoudis
is shown in figure 3 together with values calculated by use of equation
(13). In general the calculated values agree well with those obtained
by Lykoudis. For very low Prandtl numbers, of the order of 0.00l, equa-
tion (13) predicts a Nusselt number about 10 percent lower than that of
Lykoudis at a Peclet number of 104. At a Peclet number of 102 the cal-
culated values from equation (13) group about a Nusselt number of



approximately 7.0 for the Prandtl number range shown; the curves of
Lykoudis show a similar trend except for the case of a Prandtl number of
0.1, which yields a Nusselt number of about 8.7.

A comparison of results obtained from equation (13) and the anal-
ytical curves of both Lykoudis and Hofmann over a combined Prandtl num-
ber of 0.001 to 1000 is shown in figure 4 in terms of Stanton number as
a function of Prandtl number for a Reynolds number of 106. The good
agreement between values calculated from equation (13) and those of the
two analyses in their particular Prandtl number range of applicability
is apparent. The deviation of the values calculated by use of equation
(13) from those of Hofmann in the range 0.1 < Pr < 0.5 1is attributed
to the latter's fairing of the viscous-fluid curves into curves obtained
from a liquid-metal heat-transfer analysis similar to that of Lyon.
Such a procedure results in higher Stanton numbers in the liquid-metal
range than are predicted by Lykoudis and equation (13). The dip in the
curve at a Prandtl number near 1.25x10-2 is shown on a larger scale in
figure 5, where Stanton number is again plotted as a function of Prandtl
number for a Reynolds number of 106. Included also in figure 5 are
curves based on Lyon (eq. (1)) and Deissler (eq. (2)). The curve based
on Deissler's work shows a dip near a Prandtl number of 5x10-3 and gen-
erally exhibits a form and trend of Stanton number variation with
Prandtl number similar to Lykoudis' curve and equation (13). The curve
based on Lyon's work shows no dip. The dips in the curve are believed
to be associated with the diffusivity-ratio relations considered by
each investigator.

SUMMARY OF RESULTS

The following result and recommendation for further work were ob-
tained from a study of available literature on convective heat transfer
for fully turbulent flow in smooth tubes:

1. An empirical equation was evolved that closely approximates
heat-transfer values obtained by the analyses of Lykoudis for liquid
metals and Hofmann for viscous Newtonian fluids. Based on these anal-
yses, the empirical equation is valid for Prandtl numbers from O.001 to
1000 and Reynolds numbers from 2.1x103 to 107. The terms included in
the equation are Reynolds number Re, Prandtl number Pr, and an empiri-
cal diffusivity ratio between heat and momentum 0%; they are related
as follows:

0.04,0.1
Nu= 6.8 6 + 0.023 U*RGO'SPI‘O’41 Re 2]

where
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i

1/(1 + pr)

o% = 1 - 1/(1 + 19Pr + 100Pr)

2. Experimental data to verify the analysis of Lykoudis for Peclet
numbers greater than 1000 and Prandtl numbers less than 0.02 shculd be
an objective of experiments in a general study of heat transfer with

ligquid metals.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, August 23, 1960
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APPENDIX -
specific heat, Btu/(1lb mass)(OF)

tube diameter, ft

f1,f5,f35  functions

Nu

Pe

Pr

St

mass velocity, 1b mass/(hr)(sq ft)
heat-transfer coefficient, Btu/(hr)(sq £t)(°F)
thermal conductivity, Btu/(hr)(ft)(°F)

Nusselt number, hD/k, dimensionless

Peclet number, RePr, dimensionless

Prandtl number, pcp/k, dimensionless

Reynolds number, GD/u, dimensionless .
Stanton number, Nu/PrRe, dimensionless
Prandtl factor, 1/(1 + Pr), dimensionless
fluid viscosity, 1b mass/(hr)(ft)

analytical diffusivity ratio, dimensionless

empirical diffusivity ratio, dimensionless
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